hi there, i need some help 
[25 Aug 200607:47pm] 
my problem is to solve a set of Einstein equation numerically. the method is simple  by the matrix representation of hamiltonian. but i've faced an internal technical problem:
Error, (in evalf/EigensRG) both matrices must have the same dimension
here is the maple code:
> restart; > L1:=(1/2)*diff(psi(a,n),a,a)+(1/2)*(a^2)*psi(a,n)=E*psi(a,n); > H:=(1/2)*Diff( Psi(a,n),x$2)+V*Psi(a,n); > V:=(1/2)*a^2; > with(orthopoly,L); > L(3,a); > f:=exp(a/2); > psi:=unapply(f*L(n,a),a,n); > Hmn:=(m,n)>Int(psi(a,m)*((1/2)*diff(psi(a,n),a$2)+V*psi(a,n)), a=0..infinity); > with(linalg): > p:=1: for k from 5 by 1 while abs(p)>0.1 do H1:=array(1..k,1..k): for i from 1 to k do for j from 1 to k do H1[i,j]:=value(Hmn(i,j)):od:od: H2:=array(1..k+1,1..k+1): for i from 1 to k+1 do for j from 1 to k+1 do H2[i,j]:=value(Hmn(i,j)):od:od: E1_i:=convert(evalf(Eigenvals(H1,'vects1')),list): E1_s:=sort(E1_i,numeric): E2_i:=convert(evalf(Eigenvals(H2,'vects2')),list): E2_s:=sort(E2_i,numeric): p:=E2_s[1]E1_s[1]: p:=E2_s[2]E1_s[2]: p:=E2_s[3]E1_s[3]: od: k;
Error, (in evalf/EigensRG) both matrices must have the same dimension
what can be a treatment? it should be a simple thing, i suppose.

